INFORMATION RETRIEVAL

Week 10 – Evaluation

16.05.2025 — Severin Mills

Today

1

3

Exercise Recap

Theory

Kahoot

Champion Lists

- Evaluation
- Probabilistic Retrieval

Exercise 9: Evaluation

True	False	
0	0	The idea of champion lists is to precompute, for each term t in the dictionary, the set of the r (r is fixed in advance) documents with the highest weights for t.
0	0	For tf-idf weighting, the champion list for term t would be the r documents with the lowest tf values for term t .
0	0	Tiered indices can be viewed as a generalization of champion lists.
0	0	With using tiered indices, if we fail to get K results from tier 1, query processing "falls back" to tier 2, and so on

- Definition of Champi
 Lists
- 2. No, it would be the highest tf values
- 3. True, we use tiered indices to prevent scarce returns
- 4. Definition of tiered indices

Calculating the cosine distance from a query Q to all documents D is an expensive operation. Cluster pruning attempts to reduce this cost by								
selecting a subset of \sqrt{N} leaders at random, and partitioning all documents into clusters of approximately \sqrt{N} documents each. To process a								
query, we only compute the from the query vector to the of each , and then search								
for the	for the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, it							
to give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed		
optimization								

Q2

1. distance

			nents D is an expensive						
query, we only com	pute the	from the o	query vector to the	of ea	ch	, and then search			
for the	for the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, it								
is	isto give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed			
optimization									

- 1. distance
- 2. leader

Calculating the cosine distance from a query ${\bf Q}$ to all documents ${\bf D}$ is an expensive operation. Cluster pruning attempts to reduce this cost by selecting a subset of \sqrt{N} leaders at random, and partitioning all documents into clusters of approximately \sqrt{N} documents each. To process a									
query, we only compute the from the query vector to the of each , and then search									
for the	for the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, it								
is	is to give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed			
optimization									

- 1. distance
- 2. leader
- 3. cluster

Calculating the cosine distance from a query Q to all documents D is an expensive operation. Cluster pruning attempts to reduce this cost by selecting a subset of \sqrt{N} leaders at random, and partitioning all documents into clusters of approximately \sqrt{N} documents each. To process a								
query, we only compute the from the query vector to the of each , and then search								
for the	or the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, it							
to give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed		
optimization								

- 1. distance
- 2. leader
- 3. cluster
- 4. nearest document

Calculating the cosine distance from a query ${\bf Q}$ to all documents ${\bf D}$ is an expensive operation. Cluster pruning attempts to reduce this cost by selecting a subset of \sqrt{N} leaders at random, and partitioning all documents into clusters of approximately \sqrt{N} documents each. To process a									
query, we only compute the from the query vector to the of each , and then search									
for the	for the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, it								
is	is to give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed			
optimization									

- 1. distance
- 2. leader
- 3. cluster
- 4. nearest document
- 5. heuristic

Calculating the cosine distance from a query Q to all documents D is an expensive operation. Cluster pruning attempts to reduce this cost by selecting a subset of \sqrt{N} leaders at random, and partitioning all documents into clusters of approximately \sqrt{N} documents each. To process a									
query, we only compute the from the query vector to the of each , and then search									
for the	for the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, i								
is	is to give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed			
optimization									

- 1. distance
- 2. leader
- 3. cluster
- 4. nearest document
- 5. heuristic
- 6. not guaranteed

Calculating the cosine distance from a query ${\bf Q}$ to all documents ${\bf D}$ is an expensive operation. Cluster pruning attempts to reduce this cost by selecting a subset of \sqrt{N} leaders at random, and partitioning all documents into clusters of approximately \sqrt{N} documents each. To process a									
query, we only compute the from the query vector to the of each , and then search									
for the	for the within that cluster. This is a heuristic for solving the nearest-neighbour problem. As a , however, it								
is	is to give the correct answer.								
distance	leader	cluster	nearest document	not guaranteed	heuristic	guaranteed			
optimization									

Recall and Precision

Recall and Precision

Specificity and Accuracy

Specificity and Accuracy

hj Relevant Not relevant

Specificity and Accuracy

Specificity: 50%

Specificity and Accuracy

Specificity: 100%

Not relevant

Specificity and Accuracy

Specificity and Accuracy

Specificity and Accuracy

Specificity: 100%

Defining all the terms

Recall: How good is the system at returning as many relevant results to you

Precision: How useful are the returned results

Specificity: How good is the system at not bothering you with useless stuff

Accuracy: How good is the system in total

Hacking Recall and Accuracy

Issue: You can hack accuracy and recall by never returning anything or always returning everything respectively.

Compromise

Merge Precision and Recall: F-Measure

Use the mean to balance the trade-off on both sides.

$P: \begin{array}{c} \Omega \to [0,1] \\ \omega \mapsto P(\omega) \end{array}$ Universe

Odds

$$O_P(E) = \frac{P(E)}{P(\bar{E})}$$

Bayes' Rule

$$p(E|F) = \frac{P(F|E)}{P(F)} \times P(E)$$
 posterior prior

Notation

$$\begin{array}{c} p_X(\ \, \blacksquare \ \,) \\ p_X(\ \, \bullet \ \,) \\ p_X(\ \, \bullet \ \,) \\ \end{array} \qquad \begin{array}{c} P(X = \ \, \blacksquare \ \,) \\ P(X = \ \, \bullet \ \,) \\ P(X = \ \, \bullet \ \,) \\ \end{array}$$

 $P(\blacksquare) = 0.5$ No go!

Mystery Exercise

Mystery

- Will be uploaded to Moodle
- Entirely optional
- First 3 students to submit correct solution will win a prize

Kahoot

https://create.kahoot.it/details/duplicate-ofinformation-retrieval-ex-07-vector-spacemodels-mschoeb/ef383953-b43a-4abd-af2ad9ebf2ad1019