INFORMATION RETRIEVAL

Week 12 – Summary

Today

1

Semester Recap

2

Theory

• Large Language Models

3

Kahoot

Incidence Matrix

0: Term is **not** in document

1: Term is in document

Incidence Matrix

Very inefficient storage usage!

Inverted Index

No storage usage for the zeroes, store documents in lists

Intersection algorithm

Used to find documents containing both terms A and B.

Exam question types

- Querying on Incidence Matrices
- Building the Inverted Index
- Performing queries on the index
- Complexities of query types
- Intersection algorithm (steps, length)

Term Vocabulary

Lot of steps to do before building the index!

Collecting documents

- What encoding type?
- What language?
- In what context?

Tokenization

- Punctuation
- Stop words
- Careful of corner cases
- Know the vocabulary!

Raw or processed	Tied to document	Full name	Simplified/casual	
raw	tied with position	positional token	token (implicitly positional)	
raw	tied without position	non-positional token		
raw	not tied	word, non-normalized type	type (implicitly non-normalized in the book) token (compiler community)	
processed	tied with position	positional posting		
processed	tied without position	non-positional posting	posting (implicitly non-positional)	
processed	not tied	normalized type, term (if in index)		

Linguistic preprocessing

- Normalization
- Expansion
- Lemmatization and Stemming

Phrase search

Biword: False positives

Positional: Can reconstruct whole

document

Biword indices

Positional indices

Exam questions

- Applying stemming and lemmatization
- Building a bi-word index
- Querying on bi-word and positional indices
- Reconstruction documents from positional indices

B+-tree

A n-m B+-tree has between \mathbf{n} and \mathbf{m} children and between $\mathbf{n} - \mathbf{1}$ and $\mathbf{m} - \mathbf{1}$ keys.

All leaves at same depth.
Usually have extra pointers in postings lists.

Permuterm index

Use a B+-tree to store all rotations.

k-gram index

Spell correction

Exam questions

- Calculations using Jaccard coefficient and Edit distance
- Working with k-grams, especially recognizing false positives
- Working with permuterm indices

Blocked Sort-Based Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Parse termID-docID pairs
- Sort pairs according to termID
- Write back intermediate results

Blocked Sort-Based Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Parse termID-docID pairs
- Sort pairs according to termID
- Write back intermediate results

Blocked Sort-Based Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Parse termID-docID pairs
- Sort pairs according to termID
- Write back intermediate results

Blocked Sort-Based Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Parse termID-docID pairs
- Sort pairs according to termID
- Write back intermediate results

Blocked Sort-Based Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Parse termID-docID pairs
- Sort pairs according to termID
- Write back intermediate results

Single-Pass In-Memory Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Create intermediary index
- Sort index by term
- Write back intermediate index to disk

Single-Pass In-Memory Indexing

- 1. Shard the collection of documents
- 2. Process each block one by one in memory
- Create intermediary index
- Sort index by term
- Write back intermediate index to disk

MapReduce

30.05.2025

Exam questions

- Know the complexities and algorithms of BSBI and SPIMI
- Performing logarithmic merging

Index Compression

Compression

Heap's Law, Zipf's law

Compression methods:

- Encoding gaps
- Unary
- Variable length
- Fixed length
- UTF-8
- Gamma

$$M = k\sqrt{T}$$

$$Frequency = \frac{k}{Rank}$$

Index Compression

Compression

- Applying Heap's and Zipf's law
- Mainly applying the various compression methods and knowing how they work

Zone Search

- Parametric indices: Each parameter gets a index
- Shared index: All parametres in one index, but each posting is flagged by parametre

Both: Add weights to zones, rank by weights.

Standard inverted inverted

Vector Space Model

Encode documents and queries as vectors. Use tf-idfs as entries to vector Renormalized inner product gives similarity between vectors in the vector space.

SMART Notation

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2+w_2^2++w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times \text{tf}_{t,d}}{\text{max}_t(\text{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u (Section 6.4.4)
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			1 ,	$1/CharLength^{\alpha}$, $\alpha < 1$
L (log ave)	$\frac{1+\log(tf_{t,d})}{1+\log(ave_{t\in d}(tf_{t,d}))}$				

Exam questions

- Know how to calculate tf-idfs
- Know SMART Notation
- Compute scores between documents and queries

Scoring

Index Elimination

- 1. Remove postings lists with many postings
- 2. Remove postings with only a few terms

Scoring

Champion Lists

- 1. Sort PLs by decreasing tf
- 2. Keep top r documents from each postings list.
- 3. Union top r from each term

Scoring

Impact Ordering

- 1. Build Champion Lists
- 2. Sort terms by idf
- 3. Traverse term-at-a-time

Scoring

Tiered indices

- 1. Build Champion Lists
- 2. Split up into tiers by term frequencies
- 3. Go through T1, if not enough, go to T2, etc.

Scoring

Clustering

Scoring

Exam questions

Know exactly how the different scoring systems work

Evaluation

Metrics

Precision, Recall, Specificity, Accuracy F-Measure

$$F_{\alpha} = \frac{1}{\frac{\alpha}{P} + \frac{1-\alpha}{R}}$$

Not relevant

Type I error

(false positives)

True negatives

Evaluation

Exam questions

- Know the different metrics by heart
- Differentiate between false positives and false negatives
- Use the F-Measure
- Understand the ROC Curve

Probabilistic Retrieval

$$P(R=1|D=d \land Q=q)$$

Probability that, for a query q and a document d, d is relevant for query q

Probability ranking principle

Probabilistic Retrieval

Retrieval Status Value

$$RSV_d = \sum_{k|d_k = 1 \land q_k = 1} \log \frac{N}{\mathrm{df}_t}$$

$$RSV_d = \sum_{k|d_k=1 \land q_k=1} \log \left| rac{p_k}{1-p_k} - \log \left| rac{u_k}{1-u_k}
ight|$$

Odds of containing term k in non-relevant documents

Probabilistic Retrieval

Exam questions

- Know the notations
- Apply Bayes' Rule

Finite State Automata

How do we generate words?

• Assign probabilities!

Generating a document

"Probability that document D consists of d_1d_2d_3d_4"

$$P(D = (d_1, d_2, d_3, d_4)) =$$

$$(1 - p_{stop})P(D_1 = d_1)$$

$$(1 - p_{stop})P(D_2 = d_2|D_1 = d_1)$$

$$(1 - p_{stop})P(D_3 = d_3|D_1 = d_1 \land D_2 = d_2)$$

$$(1 - p_{stop})P(D_4 = d_4|D_2 = d_2 \land D_3 = d_3)p_{stop}$$

Exam questions

- Calculate probabilities of generating sentences
- Beware of stop probabilities

Kahoot

https://create.kahoot.it/details/121b6b6e-6890-490e-a0ef-69e84347f04f